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Abstract

Mechanical unfolding of a single domain of loop-truncated superoxide dismutase protein

has been simulated via force spectroscopy techniques with both all-atom (AA) models and

several coarse-grained models having different levels of resolution: A Gōmodel containing

all heavy atoms in the protein (HA-Gō), the associative memory, water mediated, structure

and energy model (AWSEM) which has 3 interaction sites per amino acid, and a Gōmodel

containing only one interaction site per amino acid at the Cα position (Cα-Gō). To systemati-

cally compare results across models, the scales of time, energy, and force had to be suitably

renormalized in each model. Surprisingly, the HA-Gōmodel gives the softest protein, exhib-

iting much smaller force peaks than all other models after the above renormalization. Clus-

tering to render a structural taxonomy as the protein unfolds showed that the AA, HA-Gō,

and Cα-Gō models exhibit a single pathway for early unfolding, which eventually bifurcates

repeatedly to multiple branches only after the protein is about half-unfolded. The AWSEM

model shows a single dominant unfolding pathway over the whole range of unfolding, in con-

trast to all other models. TM alignment, clustering analysis, and native contact maps show

that the AWSEM pathway has however the most structural similarity to the AA model at high

nativeness, but the least structural similarity to the AA model at low nativeness. In compari-

son to the AA model, the sequence of native contact breakage is best predicted by the HA-

Gōmodel. All models consistently predict a similar unfolding mechanism for early force-

induced unfolding events, but diverge in their predictions for late stage unfolding events

when the protein is more significantly disordered.
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Author Summary

Although experimentalists can now unfold single proteins in the lab by pulling them apart

and measuring the force and extension, a clear idea of how the protein changes shape and

loses structure during this process is currently missing. Molecular dynamics simulations

can offer insight as to what is actually happening structurally when you pull a protein

apart. However, typical simulations of processes that happen nearly instantaneously in the

lab take weeks to perform, when every atom must be accounted for. Researchers have thus

resorted to much faster “coarse-grained models”, where the system is simplified by remov-

ing select atoms and the remaining interactions rescaled, but the accuracy of such simula-

tions are known to suffer as a result. How accurate or inaccurate are the current coarse-

grained models in capturing the unfolding mechanisms of proteins? Our findings upon

investigating this question suggest that, while coarse-grained models successfully capture

early unfolding events of nearly-folded proteins, they suffer when trying to describe the

late stages of unfolding in mostly-disordered proteins. By showing how coarse-grained

models may fail to capture the accuracy of their more sophisticated but cumbersome

counterparts, we can shed light on how to improve their reliability, increase their speed,

and enhance their relevance in capturing biologically-relevant phenomena.

Introduction

No other scientific discipline has been so challenged to match the standard of physics-based

simplicity as molecular and cell biology, perhaps in parts due to the inherent complexity of the

systems under study and to our incomplete knowledge of the structure and function of the liv-

ing cell. In narrowing this gap, minimal models of proteins have been developed as a step

towards the goal of finding an “irreducible element” that still captures at least some of the

essential physics and can thus reproduce and predict experimental measurements [1, 2].

In this regard, minimal models have enjoyed success in testing, refining, and validating the

conceptual foundations of the energy landscape theory of protein folding [3–7] as well as

forced unfolding mechanisms [8]. A minimal model attempts to capture the essential dynam-

ical behavior of a protein, while upholding the notion of simplicity along with its concommi-

tant computational efficiency. In practice this involves coarse-grained (CG) representations of

a protein with fewer degrees of freedom than the atomic level of description, simpler, phenom-

enological interaction potentials, and classical rather than quantum dynamics.

Various semi-quantitative comparisons between CG models and experiments have been

made [9–11]. At present however, systematic tests comparing the accuracy of coarse-grained

models with fully atomistic models are still in need. Fully-atomistic models of proteins have

their own shortcomings, including the inability of current atomistic force-fields to fold some

proteins such as ubiquitin, a problem which has however been addressed recently and at least

partially resolved [12]. However, all-atom models have now been successful in folding small

proteins [13, 14], elucidating the binding properties of small-molecule drugs [15], and charac-

terizing complex molecular processes such as ribosomal translation [16].

Steered molecular dynamics (SMD) simulations can provide an in silico realization of

experimental force microscopy studies [17–19], where a force can be applied to a single pro-

tein– by optical tweezers for example– to unfold it [9, 10, 20]. Such computational studies can

reveal details of the conformations of proteins during forced unfolding at atomic resolution.

Force-extension curves obtained from atomic force microscopy (AFM) or optical trap assays
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generally display a saw-tooth pattern, where each partial unfolding event corresponds to a sud-

den drop in resistive force [9, 10, 20–22].

Our objective in this paper is to evaluate several CG models in SMD simulations by com-

paring the unfolding mechanisms predicted by each model to those predicted by a reference

all-atom simulation under the same conditions. To this end, we construct scaling procedures

such that the time, energy, and force scales can be meaningfully compared, and we develop

several different metrics that each provide a different viewpoint of the unfolding dynamics.

It has been shown that the dynamics of small, globular proteins is well-depicted by all-atom

force fields with CHARMM22� with explicit TIP3P water molecules as solvent [14]. Atomistic

simulations with explicit solvent, however, are limited in length and time scales of order

100nm and a few μs, unless specialized hardware is used [23]. Simulating the complete unfold-

ing process of a full protein in explicit solvent is currently unfeasible if one wishes to simulate

the unfolding mechanism with the same pulling rates as in experiments, and obtain compara-

ble statistics. Thus, to simulate and sample large systems, coarse-grained models are required,

because the energy function can be evaluated rapidly and the resulting molecular dynamics

does not require a short time step. Various aspects of the protein dynamics and folded struc-

tures are successfully captured by structure-based Gō-like models [1, 24–27], in which the pro-

tein is biased towards its native folded state by native interactions. An interesting question is

whether structure-based models can accurately capture the dynamics and the intermediate

conformations of partially unfolded proteins during the mechanical unfolding process [9, 10].

Here we consider three Gō-like models at different levels of resolution: the Associative mem-

ory, Water mediated, Structure and Energy Model (AWSEM-Gō) [27]; a heavy-atom Gō
model [25] that considers all atoms except hydrogen; and a one bead per residue Cα-based Gō
model [24].

Several previous studies have compared CG models to all-atom simulations and experi-

ments [9, 10]. Nevertheless, none of these studies have taken into account that effective time

and energy scales must be normalized for meaningful comparison. There is some disagree-

ment whether or not the unfolding pathways predicted by structure based models agree with

all-atom simulations or experimental observations [9, 10]. The authors of ref. [10] propose

that the unfolding pathway from both CG models of titin I27 domain protein and all-atom

implicit solvent simulations are not consistent with the experimental results even at low pull-

ing speeds. On the other hand, CG pulling simulations of T4 lysozyme in Ref. [9] qualitatively

agree with the experimental findings [28–30]. Sun et al. [31] have compared structure-based

Gō models and experiments using force-clamp simulations; these comparisons show general

agreement but often fail when sequence details are important in determining the weights of

folding intermediates.

In this paper, we study the forced unfolding process of a monomer of a loop-truncated vari-

ant of superoxide dismutase (SOD1). SOD1 was the first protein discovered in which muta-

tions had an autosomal-dominant causal relationship to amyotrophic lateral sclerosis (ALS)

[32, 33], an invariably fatal motor neuron degenerative disease characterized by progressive

loss of motor neurons [34], with a lifetime risk by age 70 of about 1/1000 [35]. The loop-trun-

cated variant of SOD1 has loops IV (residues 49–81) and VII (residues 124–139) replaced with

short Gly-Ala-Gly tripeptide linkers; here we denote this variant simply as tSOD1 [36, 37].

tSOD1 consists of a β-barrel tertiary fold containing 8 β-strands and 110 residues. While full-

length SOD1 readily forms a homodimer, tSOD1 is obligately monomeric. Moreover, the

disulfide bond between C57 and C146 is no longer formed due to the truncation of loop IV

and removal of the putative C57. In experimental protein constructs, the remaining cysteines

are mutated (C6A/C111S/C146S) to avoid intermolecular crosslinking; we employ the same

construct here. In what follows, we first present the details of each model and the simulation
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set-up. We next describe the normalization of time and energy across models, by calibrating

the pulling-rate, temperature, and force in the CG models with respect to the all-atom model.

Then we discuss the force-extension curves we obtained, the evolution of structure as the pro-

tein is unfolded, and the predictions of the unfolding pathways provided by each model. We

finally conclude and briefly discuss the implications of our results.

Methods

Simulation models

The aim of this study is to simulate the pulling process of the loop truncated SOD1 protein

[37], and compare the results of an all-atom model with several coarse-grained (CG) models.

The experimental structure of the tSOD1 monomer can be found as chain A of PDB ID 4BCZ.

Force spectroscopy simulations were carried out by tethering both termini with a harmonic

potential. The last residue (C-terminus) is then moved along the vector from C- to N-terminus

with constant velocity of 1 m/s. The stiffness of the spring that imparts the pulling force on the

protein was set to 1000 kJ/(mol � nm2). Experimental pulling speeds in atomic force micros-

copy (AFM) vary widely between 10−8-10−2 m/s [38–40], while typical speeds in atomistic sim-

ulations are significantly faster, also varying widely between 1–1000 m/s [9, 10, 22, 41].

Simulating and sampling the unfolding mechanism of a full protein in explicit solvent with the

same pulling rate as in experiments is currently not feasible. The faster pulling rates in simula-

tions may preempt slow dynamical transitions on the unfolding pathway that would otherwise

occur at slower rates. A systematic study of the dependence of the unfolding mechanism on

pulling rate for the present system is an interesting topic for future research.

Four different types of force fields and protein models were considered: an all-atom (AA)

simulation in explicit solvent, a heavy atom Gō model (HA-Gō) [25], the Associative memory,

Water mediated, Structure and Energy Model (AWSEM-Gō) [27], and a Cα-Gō model [24] in

order of decreasing resolution. In the HA-Gō model [25], all heavy atoms are present. The

AWSEM-Gō [27] model is an associative memory Hamiltonian model with a three-bead

representation per amino acid. In the Cα-Gō [24] model, each amino acid is represented by

only one bead [11, 24]. Note that in Gō models, only native interactions are attractive, while

non-native interactions are purely repulsive. Further description of the Gō model including

interaction potentials is given in the specific models sections below. Fig 1 shows a representa-

tion of four amino acids in each of the models. Pulling simulations were repeated 20 times for

each model, with the same initial structure but different random seeds.

All-atom (AA) model. We used the CHARMM22� force field [43] to model a monomer

of the loop-truncated SOD1 protein [37] with the TIP3P [44, 45] water model. All-atom simu-

lations were carried out with the molecular dynamics code GROMACS-4.6 [46, 47]. To obtain

the initial configuration for the pulling simulation, the PDB structure was energy minimized

and equilibrated for 20 ns in an isobaric ensemble (NPT) simulation with a salt concentration

of 0.15 M. The average size of the simulation box is 6.0 × 6.0 × 64.1 nm3 with 75,235 water

molecules, 211 Na+ ions, and 208 Cl- ions. A time step of 2 fs was used with the LINCS algo-

rithm [48]. All all-atom simulations were performed in an isobaric ensemble (NPT) with a

constant temperature T = 300 K and pressure p = 1 atm. The temperature of the protein and

the solvent were kept constant with two separate thermostats [49–51]. The velocity rescaling

algorithm with a stochastic term was used as thermostat for both protein and solvent [52]. The

pressure was kept constant using the Parrinello-Rahman algorithm with a weak coupling of 1

ps [53]. Lennard-Jones interactions (LJ) were truncated at 1.4 nm, and the particle-mesh

Ewald method [54] was used for the electrostatic interactions.
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Heavy atom-Gō model (HA-Gō). In the HA-Gō model [25], all heavy atoms (non-hydro-

gen) are present and the potential function is only defined by the native state. Any two heavy

atoms that are within a cut-off distance 0.6 nm in the native state and are three or more resi-

dues apart are defined to form a native contact. In this system, the energy per contact for native

interactions is �c = 0.43 kBT. The interactions between these non-bonded atom pairs are mod-

eled by a 6–12 LJ potential [25, 55] and the separation corresponding to the potential energy

minimum between pairs is set to the separation distance between pairs of atoms in the native

PDB structure. Atoms that are not in contact in the native state are given a purely repulsive

Fig 1. Representation of residues, Glu-Phe-Asn-Ile in AA, HA-Gō, AWSEM, and Cα-Gōmodels. The resolution of the structure of the models

decreases from a) to d). In the all-atom model, all hydrogen atoms are present (white beads). A protein structure in the HA-Gōmodel includes only

heavy atoms. In the AWSEM model, there is no explicit representation of side chains. In the HA-Gō and Cα-Gōmodels, the protein is biased towards

its native state through attractive Lennard-Jones (LJ) interactions between residues that form a contact in the native state. The size of the beads in

the picture is schematic only and does not represent the size of the atoms in the CG models. Schematics were constructed using Chimera [42].

doi:10.1371/journal.pcbi.1005211.g001
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interaction given by [25] U(r) = ∑nn �(2.5Å/r)12, with uniform values of �nn = 0.01 kBT. Bonded

atoms are modeled by harmonic bond and angle potentials, along with dihedral potentials

[25]. The HA-Gō simulations were carried out with GROMACS-4.5 [46].

GROMACS input files were generated from the PDB structure using the SMOG [56] web

server. The time step was set at 2 fs. The simulations were performed at constant temperature

of 95 K (see below) using a Langevin thermostat with time constant of 1 ps. The initial configu-

ration of the pulling simulations was obtained after 1 ns equilibration at the desired

temperature.

AWSEM-Gō model (AWSEM). The AWSEM-Gō (AWSEM) model is a coarse-grained

protein force field [27] that is based on biophysical properties of the protein structure such as

hydrogen bonding, water-mediated interactions, as well as a bioinformatic-based local struc-

ture biasing term. Each residue is represented by the position and relative orientation of its Cα,
Cβ and O atoms in the backbone. The bioinformatic or “fragment-memory” term is

VFM ¼ � l
X

m

X

ij
exp �

ðrij � rmij Þ
2

2s2
ij

" #

ð1Þ

where the outer sum is over aligned memory fragments, and the inner sum is over all possible

pairs of Cα, Cβ atoms within the memory fragment that are separated by two or more residues

[27]. rij denotes the instantaneous distance between the atoms, rmij is the corresponding dis-

tance in the memory fragment, λ is a scaling factor that can be used to change the strength of

VFM, and σIJ = (1Å)|I − J|0.15 is a sequence separation-dependent width.

Note that VFM is nonlocal, involving spatially-separated atomic pairs. For this study, we

only used the available experimental information for the truncated SOD1 protein in the PDB

in the database of memories, making the memory component of the model an effective Gō
model. The total potential is [27]

Vtotal ¼ VFM þ Vbackbone þ Vcontact þ Vburial þ Vhelical: ð2Þ

Vbackbone maintains the protein backbone geometry through chain connectivity, bond, angle,

dihedral angle, and excluded volume interactions, using backbone reconstrution assuming an

ideal peptide bond. Vcontact is an amino acid-dependent tertiary interaction term, consisting of

a pairwise additive direct term, along with a many-body water mediated term.

The Vburial term represents the preference of an amino acid of a specific type to be buried

inside the protein or to be on the surface, and Vhelical is an explicit hydrogen bonding term that

acts between the carbonyl oxygen of residue i and the amide hydrogen of residue i + 4, recon-

structed from the coarse-grained model assuming an ideal peptide bond. A detailed descrip-

tion of the structural model and the force field can be found in Ref. [27].

For this model, the initial conformation was equilibrated for 1 ns before pulling. The

AWSEM simulations were performed with the LAMMPS simulation package [57]. A time step

of 5 fs and a Langevin thermostat with a time constant of 1 ps was used to keep the tempera-

ture constant at T = 319 K (see below for determination of the simulation temperatures).

Cα-Gō model. The simplest model that we studied is the Cα-Gō model, in which each

amino acid is represented by one bead centered on their Cα-atom positions [24]. This bead-

spring protein model is biased toward the native state by an attractive 10–12 Lennard-Jones

potential, set only between residues that are in contact in the native structure, as determined

by a cutoff distance of 0.6 nm between any pair of heavy atoms. Pairs of residues may have one

or more contacts depending on how many heavy-atom pairs are within the cutoff distance in

the native states, thus the net interaction energy between residues is generally heterogeneous.

The separation at the minimum of the potential for each pairwise interaction is set to the
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corresponding separation between the Cα-atoms in the native PDB structure. The geometry of

the backbone in the native state is modeled by harmonic potentials for angles and four-body

dihedral potentials. For residues that are not in contact in the native state, the excluded volume

diameter of each CG residue is *0.4nm [55]. The Cα-Gō representation is a popular CG

model and has been used extensively in studies of protein folding/unfolding mechanisms [1, 2,

9–11, 24].

The initial configuration of the pulling simulation is obtained after 1 ns equilibration. All

parameters for the Cα-Gō model were obtained from SMOG default values [56]. The time step

for the Cα-Gō model is set to 0.004 LJ time units. A Langevin thermostat with time constant of

12 LJ time units was used to keep the temperature constant at T = 142 K.

Native and non-native contacts

To compare the mechanical unfolding pathway of the protein in the all-atom and coarse-

grained models, we computed the number of native contacts of all configurations during the

pulling simulations. The definition of a native contact is the same throughout this paper. We

calculated the native contacts for pairwise distances of all the moieties i and j in each model for

any protein structure (these may be heavy atoms, or coarse-grained residues). The fraction of

the native contacts Q for conformation X,Q(X), is defined as

QðXÞ ¼
1

jSj

X

ði;jÞ2S

1

1þ exp ½b0
ðrijðXÞ � lr0

ijÞ�
; ð3Þ

where rij(X) is the distance between moieties i and j in conformation X, r0
ij is the distance

between the corresponding moieties i to j in the native state conformation, S is the set of all

pairs of native contacts (i, j) belonging to the native structure. Amino acids having a native

contact must be separated by four or more residues in the primary sequence and r0
ij < rcut (rcut

is a model-dependent cutoff distance given in Table 1) in the native state [58], β0 is a smooth-

ing parameter and the factor λ takes into account the fluctuations of the contacts.

As a result of adjusting rcut, different models exhibit approximately the same native contact

map, and a scatter plot of the number of native contacts present during the pulling trajectory

for the AA model vs the CG model exhibits a slope of unity (y� x), (see Supporting Informa-

tion S1 Fig). Table 1 summarizes the values of β0, λ, and rcut for each model. For the all-atom

and HA-Gō models, the same set of parameters were used as the models share the same struc-

ture. The number of contacts for pairs of residues in the Cα-Gō model were weighted with

respect to the number of contacts between the same pair in the native state of the protein in

the all-atom model, i.e. a given pair of residues could have more than one contact between

them, in proportion to how many of their heavy atoms were in contact.

All new contacts that are formed during the simulations between moieties i and j are con-

sidered non-native contacts if the distance between i, j in the PDB structure is larger than rcut,
see Table 1 for values of rcut in each model. To count the total number of non-native contacts

in configuration X, we introduce a smooth function that interpolates between 1 and 0 as

Table 1. Parameters used to define contacts for each model (see Eq (3)). β0 is the smoothing parameter,

λ takes into account the fluctuations of the contacts., and rcut is the model-dependent cut-off distance.

Model β0 [nm−1] λ rcut [nm]

AA/HA-Gō 50 1.8 0.48

AWSEM 50 1.2 0.6

Cα-Gō 50 1.2 1.2

doi:10.1371/journal.pcbi.1005211.t001

Fidelity of CG Protein Models for Simulated Force Spectroscopy

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005211 November 29, 2016 7 / 31



distance between i and j is increased, with a characteristic length scale R0 given by the mean of

the distances between native pairs in the PDB structure: R0 ¼ hr0
iji. The smoothing parameter

β0 and the factor λ are the same as for native contacts (see Table 1). The number of non-native

contacts in configuration X is then:

NnnðXÞ ¼
X

ði;jÞ

0 1

1þ exp ½b0
ðrijðXÞ � lR0Þ�

; ð4Þ

R0 = 0.24, 0.46, 0.91 nm for the AA & HA-Gō, AWSEM, and Cα-Gō model, respectively.

We use Q in our analysis of all models as a convenient order parameter on which to project

the unfolding mechanism, independent of its accuracy as a kinetic reaction coordinate. In

what follows, we will also look at other quantities describing unfolding, such as β sheet dissoci-

ation, and structural alignment of remaining parts of the native fold.

Time and energy scales in CG models

The interpretation of “time” and “energy” in a CG model must be carefully considered. The

energy landscape of CG models is generally smoother, due to softer interaction potentials,

reduced degrees of freedom, and lack of explicit solvent molecules. A smoother potential

energy surface leads to faster dynamics in comparison to all-atom forcefields. Therefore, the

meaning of time in CG models is not the same as in all-atom explicit simulations. When com-

paring time, velocity, energy, and forces in CG models and all-atom force fields, we should

interpret the results with respect to an “effective” energy and time in the system.

Normalizing temperature scales. To be able to compare the CG and all-atom simulations

at the same effective temperature, we performed all simulations at 90% of the folding tempera-

ture Tf of the protein in each model. Fig 2 shows the thermal melting curves for each of the CG

models as a function of T/Tf. To obtain the melting temperatures of the CG models, we ran

replica-exchange molecular dynamics (REMD) simulations on the HA-Gō and Cα-Gō models.

To calculate hQ(T)i for the AWSEM model, we ran 50 direct MD simulations at each tempera-

ture T. Error bars for the AWSEM model are estimated from the correlated trajectories of Q
versus time at each temperature. In determining the standard error of the mean, we perform a

renormalization group method using block averaging to account for the effects of correlations

in the trajectories. Each of the 50 MD trajectories started from the native state, and was sam-

pled more frequently than the correlation time of each trajectory. The correlation time τi is

found for each trajectory, and the data from time 0 to τi is removed. The remaining snapshots

of each trajectory are then concatenated to one long (broken) trajectory and, for this correlated

trajectory, the mean is found, and the renormalization group procedure of Flyvbjerg and

Petersen is followed to obtain the converged standard error of the mean [59]. Implementing

the standard error of the mean without renormalization on this data set gives smaller error

bars than those obtained by the procedure we followed– about 60% of the size shown in Fig 2.

Convergence checks of the melting curves and details of the simulations are given in the

Supporting Information S2 Fig. The data were fitted to the function

hQðTÞi ¼ qu
1

1þ eDGðTÞ=RT

� �

þ qf
eDGðTÞ=RT

1þ eDGðTÞ=RT

� �

ð5Þ

where R is the gas constant and ΔG(T) = ΔH − TΔS. The parameters qf, qu, ΔH, and ΔS are pro-

vided in Table 2.

The melting or folding temperature Tf is defined as the temperature where ΔG(Tf) = 0.

From this procedure we obtained Tf = 358, 106, 158K for AWSEM, HA-Gō, and Cα-Gō models

respectively. The above procedure, wherein the unfolding enthalpy and entropy are treated as
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constants, is a crude approximation calorimetrically, and may be extended to either constant,

or temperature-dependent unfolding heat capacity [60]. The above CG models all have explic-

itly temperature-independent interactions however, so it would be inconsistent to include

such temperature-dependence in the calorimetric analysis.

The melting curve of the AWSEM model is significantly broader than the other coarse-

grained models suggesting less folding cooperativity. The relative width ΔT/Tf of the thermal

unfolding curves (from 80% to 20% of the folded baseline) are specifically 21% for the

AWSEM model, 1% for the HA-Gō model, and 4% for the Cα model. This is to be compared

with ΔT/Tf� 4% for full-length apo, disulfide-reduced SOD1 [61].

The melting temperature of the all-atom model is taken as the experimental value T = 335

K [61], since the computational effort for performing either direct MD or REMD simulations

on such a large protein in explicit solvent is prohibitive. Comparisons between experimental

and computational melting temperatures by the Shaw group [13] show large scatter and little

correlation. For the all-β proteins that were investigated however (WW domain and protein

G), the experimental and simulated melting temperatures are 371 K and 372 K respectively for

WW domain, while for protein G, the experimental and simulated melting temperatures are

340 K [62] and 345 K [13] respectively. The question arises as to the sensitivity of the AA-

model results for the unfolding-mechanism upon the temperature of the simulation. To

address this issue, we have performed additional simulations at both 290 K and 310 K, and

analyzed the results in the Supporting Information, see S3, S4 and S5 Figs. In summary, the

unfolding mechanism shows only small variations in this temperature range.

Fig 2. Melting curves for CG models. HA-Gō (blue), AWSEM (red), and Cα-Gō (cyan). Tf = 106, 358, 158K

for HA-Gō, AWSEM, and Cα-Gō respectively. The fraction of native contacts is plotted as a function of

temperature, normalized to the respective folding temperature for each model. Data bracketing the transition

region is fit to Eq 5 to yield the solid lines. Error bars are for the correlated MD trajectories in the AWSEM

model are obtained by the renormalization group method of Flyvbjerg et al [59]; the other models plotted here

have data obtained from REMD methods, and thus use the standard error of the mean.

doi:10.1371/journal.pcbi.1005211.g002

Table 2. Thermodynamic parameters for unfolding (see Eq (5)). qf, qu are fraction of folded and unfolded contacts, respectively. ΔH represents the

enthalpy change. ΔS is the change in the entropy, and Tf is the melting temperature.

qf ΔH [ kJ

mol
] ΔS [ kJ

molK
] qu Tf [K] Tsim [K]

HA-Gō 0.90 ± 0.01 285.50 ± 0.63 2.68 ± 0.01 0.05 ± 0.01 106 95

AWSEM 0.82 ± 0.02 45.45 ± 7.25 0.127 ± 0.02 0.036 ± 0.04 358 319

Cα-Gō 0.91 ± 0.02 125.48 ± 7.16 0.80 ± 0.05 0.1 ± 0.03 158 142

doi:10.1371/journal.pcbi.1005211.t002
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Normalizing time scales. The rate of pulling in each model system depends on each sys-

tem’s internal time scale. To normalize time scales across models, one can scale the time in the

CG models with respect to the AA model if a characteristic relaxation time for each model is

known. To scale the time and thus normalize the rate of pulling, we measured a relaxation

time, after mechanically perturbing each system, from the decay of the correlation function for

the fraction of native contacts. To this end, we pulled several pairs of residues apart by 15 Å in

separate simulations in each model, then removed the force and allowed the system to relax.

The selected pairs are chosen randomly with two conditions: the residues in a pair should not

be on the same β-strand, and a residue from each strand should be included in the list of 10

residues chosen. Residue pairs 13-69, 20-80, 35-45, 60-25 and 95-102 were pulled once to 15Å
in all models, and then each perturbed system was allowed to relax without constraints. The

normalized time autocorrelation of the fraction of native contacts hðQðtÞ � �QÞðQð0Þ � �QÞi
for each model was calculated and fitted to a double exponential decay A1 exp(−κ1 t) + A2

exp(−κ2t). The average values of κ1 and κ2 over all the perturbed system are given in Table 3,

see Supporting Information S1 and S2 Tables for
A1

A2
, and

k1

k2
for each perturbed residue pairs. To

normalize pulling rates, we take the relevant time-scale in each model to be the inverse of the

slower relaxation rate tCG = hκ1i
−1 at Q in the folded state.

In principle, the relaxation timescales could vary depending on the degree of unfolding. We

have performed the same relaxation time calculations at an additional three values of the

unfolding order parameter (Q = 0.7, 0.5, 0.3) and found that the relaxation rates vary by at

most about a factor of two, and tend to decrease with unfolding for the coarse-grained models

(see Supporting Information S6 Fig). No clear trend is apparent for the all atom model. Inter-

preting this result and separating the issues of different residual protein regions for different

models at a given degree of unfolding vs the normalization of timescales across different mod-

els is interesting, but not straightforward. Moreover, the weak dependence of relaxation times

implies such corrections would be small. Since the interpretation of distance is the same in the

AA and all CG models, the pulling velocity vCG for each CG model can be obtained from

vAAtAA ¼ vCGtCG: ð6Þ

In the above relation, vAA is the pulling speed in the AA model, tAA = 156 ps, and tCG is the

characteristic time scale for the CG models. A physical pulling speed of vAA = 1 m/s was used

in all simulations.

Results/Discussion

Force spectroscopy simulations

Fig 3 depicts representative snapshots of a pulling simulation in the all-atom model. The N-

and C-termini are shown in red and blue spheres, respectively, and the structure of the pro-

tein is color-coded based on the residue index in the primary sequence. The reported values

Table 3. Average relaxation rates obtained from fitting A1 exp(−κ1t) + A2 exp(−κ2t) to

hðQðtÞ � QÞðQð0Þ � QÞi.

Model hκ1i [ps−1] hκ2i [ps−1]

AA 0.0064 0.8661

HA-Gō 0.0910 16.4307

AWSEM 0.0147 0.4604

Cα-Gō 0.2352 8.1569

doi:10.1371/journal.pcbi.1005211.t003
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are the change in separation distance δx = xi − x0, where x0 and xi are the initial and instanta-

neous separation distance between tether points respectively (see Fig 3b). As we strain the

protein, destabilized contacts between residues break, and regions of secondary structure in

the protein are disrupted and dissociate. β-strands lose their native contacts, and locally

unfold. The residues in the dissociated regions are then free to form turns or coil structures.

In the all-atom simulations, the dissociation of the C-terminus at δx = 4.2 nm is the first

unfolding event, see Fig 3b. In the unfolding trajectory shown in Fig 3c, we observe the disso-

ciation of part of the N-terminus (β1-strand) at δx = 9.2 nm. In the snapshot shown in Fig 3f,

the β5 and β6 sheets unravel last. At δx = 30 nm, the protein loses all its native contacts and

forms a coiled chain.

Force-extension curves (FECs)

In force spectroscopy simulations, the force ramps up until multiple contacts break, releasing

the applied load. We observe multiple force drops (corresponding to multiple unfolding

events) in the force extension curves. Fig 4 shows a force extension curve for one run of the

AA (black line), AWSEM (red line), HA-Gō (blue line), and Cα model (cyan line).

Normalization of the unfolding force across models. In order to compare the force tra-

jectories between AA and CG models meaningfully, we propose to normalize the forces in the

coarse-grained models so that the total free energy change ΔGi/kBTi upon unfolding, where i =

Fig 3. Snapshots of tSOD1 protein (PDB 4BCZ) in all-atom pulling simulations during the unfolding process. The

tether points at the N-C termini are shown in blue and red spheres respectively. Panel a) shows the initial configuration of the

protein and panels b-f show the protein at different extensions. The colors reflect the residues’ positions (their index) and map

to a rainbow color gradient where β1 and β8 are blue and red respectively. The reported distances δx = xi − x0 are the change in

separation between the tethers, where x0 is the initial distance between tether points.

doi:10.1371/journal.pcbi.1005211.g003
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HA, AWSEM, or Cα, is the same as in the reference AA simulation. Since computing ΔGAA is a

challenging computational problem, we estimate an upper bound with the Jarzynski equality

[63] directly from the nonequilibrium simulations. The force rescaling factor αi for each

model i is defined by applying the Jarzynski equality to the rescaled force Fi:

ln hexp � bi
R L

0
FiðxÞ dx

� �
i ¼ � bAADGAA ð7Þ

The rescaled force Fi reported below for model i exhibiting an unfolding force Fsimi is therefore

Fi ¼ aiFsimi ; hi denotes an average over all 20 trajectories and βi is the inverse temperature. We

note that finite sample size corrections of the Jarzynski estimator for near-equilibrium pertur-

bations have been discussed in the literature [64], but our limited data set does not permit us to

ensure that these expressions are applicable. At L = 30nm the protein is fully unfolded but the

worm-like chain tension is not significant, see Figs 4 and 5. This procedure yields αHA = 4.72,

αAWSEM = 2.74, aCa
¼ 8:27, respectively. The above value obtained for ΔGAA� 860kBT is

clearly an overestimate in part due to the large dissipation in the system and small sample size,

however the relative values of forces between models may be unlikely to change significantly as

sample size is increased: Convergence studies for α are given in the Supporting Information S7

Fig. Another important reason that ΔGAA may be overestimated in the present assay relative to

experimental values is that the unfolded protein is under substantial tension and consequently

stretched. The free energy cost due to the consequent reduction in backbone conformational

entropy simply due to restricted Ramachandran angles is of the order *200kBT.

Order parameter change during unfolding. For each model, we plot both the force-

extension curves and the order parameter Q vs. extension for four different trajectories of the

protein during mechanical unfolding in Fig 5. These trajectories were chosen to represent

maximally different behavior in the set of simulations. For all models, as the protein unfolds,

we observe a significant loss of native contacts, and finally Q approaches zero when the protein

is fully extended. Each time the force ramps up, Q stays constant but then drops in lockstep

with the drop in force. In general, each significant force drop corresponds to a decrease in the

Fig 4. Force-extension curves for the unfolding of tSOD1 in all-atom (black), HA-Gō (blue), AWSEM

(red), and CαGōmodel (cyan). Because mechanical unfolding of a protein is a stochastic process, the

unfolding force of a protein fluctuates randomly; the position of force peaks therefore varies between

realizations. The force values for the CG models were rescaled with respect to free energy of unfolding of the

protein δx = 30 nm as determined by the Jarzynski equality, see text.

doi:10.1371/journal.pcbi.1005211.g004
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number of native contacts Q, which indicates the importance of the native contacts in unfold-

ing events for all the models; both AA and AWSEM models have attractive interactions in

addition to the native interactions.

The extension at which the protein loses most of its native contacts (Q< 0.2) is different for

each model. For the AA model, Q� 0.2 occurs when δx� 25 nm, while for the HA-Gō, and

Fig 5. FECs and corresponding native Q curves for the a) All-atom, b) HA-Gō, c) AWSEM, and d) Cα-Gōmodels for

four runs. A high value of Q at small distances indicates that the protein is folded at the beginning of the pulling. As the protein

is strained, Q decreases and finally approaches zero when the protein is fully extended. Each drop in the FEC corresponds to a

drop in Q, indicating that the loss of native contacts releases the stress. Force* represent the rescaled force.

doi:10.1371/journal.pcbi.1005211.g005
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Cα-Gō models, the corresponding δx� 20 nm, and for the AWSEM model, Q drops below 0.2

only after δx� 27 nm. In one of the HA-Gō trajectories, the protein lost more than 80% of its

native contacts at δx� 10 nm. The AWSEM model features a significant drop of Q near the

second force peak occurring at δx = 10–15 nm, which is absent in the other models. This drop

is followed by a long plateau (15 nm< δx< 28) nm while the force ramps up. This behavior is

in contrast to the HA-Gō model, where 3 out of 4 trajectories feature a large drop in Q towards

the end of the unfolding trajectory (15< δx< 20 nm). The AA and Cα models do not feature

long plateaus and unfolding proceeds in smaller drops of Q.

In the AWSEM model, the contact potential for native contacts are only defined for Cα and

Cβ atoms in the backbone and not O atoms, see Eq 1. Consequently, the potential and obtained

forces for the structure are calculated based on this definition (other terms in the model such

as helical propensity and burial do include the oxygen atoms). However, in calculating Q for

the AWSEM model, we employ the same definition as for all other models, i.e. we include all

the heavy atoms within a cut-off distance. Thus there are technically extra contacts counted in

the AWSEM model that result in a shift between the force drops and contact loss in Fig 5 panel

C. For the HA-Gō and Cα-Gō models the contact map and the native interactions are calcu-

lated only for atoms within a cut-off distance in the native states and include all the heavy

atoms.

Contact maps

Contact maps of the protein averaged over the four runs in Fig 5 are depicted in Fig 6. In this

work, native contacts are defined from the initial PDB structure. The upper triangle shows all

native contacts at Q = 0.8, Q = 0.5, and Q = 0.1, respectively from left to right. The bottom tri-

angle shows all non-native contacts, i.e. all new contacts that are formed during the course of

the simulation. Since some of these residue pairs may also posess native contacts, they will

appear in both maps. It is clear from the figure that native contacts induce the formation of

many nearby contacts in the contact map when thermal fluctuations are taken into account.

Native contacts between residues k and l are color coded by the thermal average number of

contacts divided by the total number of contacts in the PDB structure, hQkl(Q)i. Non-native

contacts do not have a particular reference structure to normalize with respect to. We thus

color code the non-native contact between residues k and l by the frequency of occurrence of

any non-native contacts between those residues in the ensemble of structures at Q, i.e. the frac-

tion of conformations at Q that have at least one non-native contact between residues k and l.
Here “at Q” means within the bin Q − δQ,Q + δQ, where δQ = 0.01.

At Q = 0.8, the native contact maps are approximately the same for all the models (see first

column, Q = 0.8). As the protein unfolds from Q = 0.8 to Q = 0.5 (second column), the C-ter-

minal domain unfolds completely in all the models. The contact maps predict the same general

unfolding events until Q� 0.5. As the protein unfolds further to Q = 0.1 (third column), the

unfolding processes begin to take different pathways across models. For the HA-Gō and Cα-

models, the largest folded domain is located at residues 50–70, while for the AWSEM model

the folded domain lies in residues 10–30. The remaining structured domain in the AA model

is larger but only partially folded, consisting of residues 10–60.

We wish to emphasize that Fig 6 is not intended to illustrate the dominant unfolding mech-

anism for each model, but is simply an analysis of a subset of the unfolding trajectories, chosen

only because they were distinct. A further analysis of the dominant unfolding mechanism will

be discussed in the subsequent text and corresponding figures.

Fig 6 shows that, for all models having more than one interaction site per amino acid, non-

native contacts consist largely of what one might call “near-native” contacts. For example in

Fidelity of CG Protein Models for Simulated Force Spectroscopy
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the AA and HA-Gō models, pairs of amino acids have several native contacts between their

constituent atoms, however some atom pairs exist between these same amino acids that are

not in contact in the native PDB structure. “Near-native” contacts would involve these particu-

lar atom pairs, and the non-native contact map, which does not have any native interactions

Fig 6. Contact-maps during forced unfolding. Top triangle: native contacts, bottom triangle: non-native contacts for Q = 0.8

(left column), Q = 0.5 (middle column), and Q = 0.1 (right column). Models are indicated in the legend of each panel. Non-native

contacts are defined here as any contacts not present in the initial PDB structure. In the native contact-map, the color scheme

is defined as red if all the native contacts between residues k, l from the PDB structure are present. Non-native contacts in the

AWSEM and Cα-Gōmodels are shown 20 times larger.

doi:10.1371/journal.pcbi.1005211.g006
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by construction, appears quite similar to the native contact map as a result. The presence of

native interactions increases the likelihood of proximal non-native interactions.

On the other hand, the Cα-Gō model has only one interaction site per amino acid and so

cannot exhibit near-native contacts. The non-native contact map is thus sparser than the other

models, and involves distinct amino acid pairs. The short-range contacts reminiscent of α-heli-

cal structure that are observed at Q = 0.1 in the Cα-Gō model are a consequence of the lenient

cutoff used for contacts between Cα residues– the other models would show these non-native

contacts as well, but because they have more degrees of freedom their cutoff distance for non-

native interactions are shorter.

Non-native interactions between amino acid pairs wherein one amino acid has been shifted

in primary sequence by one, i.e. from amino acids (m, n) to (m ± 1, n) or (m, n ± 1), can be

induced by the shear forces between β-strands in the present assay, so that strands may slide

over each other or reptate. Similar reptation has been observed in unbiased folding simulations

of a β-hairpin [65]. Here, such “off-native” contacts are relatively common for all models that

have more than one interaction site per amino acid; the relative numbers of amino acid pairs

that partake in off-native contacts compared to the number of amino acid pairs partaking in

native contacts, at the values of Q in Fig 6, are given in Table 4.

Residue contacts

To determine the sequence of the unfolding residues, we monitored the number of native con-

tacts for each residue during the pulling simulations. Fig 7A plots the average fraction Qk(Q)

of a given residue k as a function of total Q for all models. To calculate Qk(Q), we normalize

the number of contacts at Q by the number of contacts that residue k possesses in the native

structure where Q = 1. Red color corresponds to Qk(Q) = 1 and white indicates Qk(Q) = 0, i.e.

the residue has lost all its native contacts. The color scheme in Fig 7B represents the sequence

(in terms of the global order parameter Q) by which residues lose more than 50% of their con-

tacts during unfolding. The most persistent residues are colored dark blue, and the residues

that are broken first in sequence are colored white. From Fig 7, it is clear that all models predict

as first event the dissociation of the C-terminus, residues 100–110 (β8). Then, in the AA,

HA-Gō, and Cα-Gō model, the N-terminus detaches. The average unfolding pathways pre-

dicted by the AA model are very similar to the HA-Gō model, where residues in the N- and C-

terminus dissociate first, and the contacts of residues 50–74 are broken last. In contrast, the

sequence of unfolding in the AWSEM model starts from β8 and β7, and the last domains to rip

off are β3 and β2.

In summary, the similarity between unfolding events depicted in Fig 7B may be quantified

by computing the correlation coefficient between the degree of remaining structure for indi-

vidual β strands (the similarity of the darkness of the bands for each model in Fig 7B). This

gives the following correlation coefficients: between AA and HA-Gō: 0.94, between AA and

Cα-Gō: 0.86, and between AA and AWSEM: 0.62.

Table 4. Thermal averages of the number of off-native residue pairs/Number of native residue pairs.

Model Q = 0.8 Q = 0.5 Q = 0.1

AA 216/256 174/204 64/98

HA-Gō 238/255 190/198 117/119

AWSEM 247/295 201/225 53/71

Cα-Gō 24/200 30/132 43/64

doi:10.1371/journal.pcbi.1005211.t004
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Fig 7. A) Fraction of native contacts for each residue Qk(Q) vs. total number of native contacts (Q) a) All-atom,

b) HA-Gō, c) AWSEM, and d) Cα-Gō. The color red shows the presence of all the native contacts and white represents

a residue that shares no native contacts with the other residues in the protein. B) Another representation of the loss

of native structure as the protein is mechanically unfolded. The color scheme represents which residue loses

more than 50% of its contacts (Qk < 0.5) first in Q. The white color shows the least stable residues and the dark blue

represents the most persistent residues.

doi:10.1371/journal.pcbi.1005211.g007
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Protein unfolding pathway

In order to determine whether there exists a well defined unfolding pathway of the tSOD1 pro-

tein, and if so, to compare it across models, we used the template modeling score (TM-score)

[66] to compare the similarity between the protein structures of different pulling trajectories at

the same Q. The TM-score for the alignment of two structures is defined as [66]:

TM ¼
1

L

XN 1

1þ
di
d

� �2
;

d ¼ 1:24
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðN � 15Þ3

p
� 1:8;

ð8Þ

where N is the number of residue pairs, di is the distance between identical residues i in two

structures, and L is the number of residues in the reference structure. The TM-score lies

between 0 and 1; a TM-score of one indicates that the two protein structures are perfectly

matched. Usually, two structures with TM-score higher than 0.5 are considered to have the

same folded conformations, while uncorrelated protein structures have a TM-score of less

than 0.2 [66]. Measuring the TM-alignment, as well as clustering of structures by TM-score,

was performed by using Maxcluster (http://www.sbg.bio.ic.ac.uk/maxcluster) [67].

TM-scores of an all-against-all structure comparison of folded segment of protein struc-

tures obtained from each run for Q = 0.8, Q = 0.4, and Q = 0.2 are shown in Fig 8. The color

code quantifies the TM-score of pairs of structures at the same value of Q, obtained from all

pairs of trajectories: red color indicates perfectly matched structures, and white represents a

TM-score of zero. For comparing the conformations, we only considered Cα-atoms in the

backbone for the folded region of the protein. This folded region at each Q-value was defined

as a contiguous sequence of n residues with residue index i� j� i + n, where hQi(Q)i> 0.5

and hQi+n(Q)i> 0.5. The average here corresponds to the ensemble of states of all trajectories.

If there is an unfolded region with more than 10 residues in between i and i + n, then the larg-

est contiguous sequence of residues with hQi(Q)i> 0.5 was considered.

In Fig 8, TM-scores for Q = 0.8 (see left column in Fig 8) are high for all four models, which

indicates that at the beginning of the unfolding process, the backbone of the protein is very

similar in the unfolding trajectories. The Cα-model and the HA-Gō model exhibit slightly

larger deviations between trajectories at this value of Q. As the protein unfolds further, at

Q = 0.4 (second column in Fig 8), the TM-scores drop to lower values. In the AA model, the

average TM-score of one trajectory (run 20) is 0.33, while other runs have higher TM-scores.

For the HA-Gō model, values of the TM-score range between 0.3–0.6. In the Cα-Gō model, the

TM-scores range between 0.5–0.76. At the same Q = 0.4, the TM-scores in the AWSEM model

are still much higher and vary between 0.6–0.94, which indicates the presence of one dominant

pathway.

It is clear from the large number of trajectories with high TM-scores that the AWSEM

model exhibits a much stronger pathway behavior than the other models, which begin to bal-

kanize into clusters of residual structure. This can also be clearly seen by plotting the mean

TM-score between allM(M − 1)/2 trajectories (M = 20 here) as a function of Q, for all four

models, see Fig 9.

At Q = 0.2, the TM-scores for AA, HA-Gō, and Cα-Gō models have reached about 0.2,

which is comparable to the TM-score of a random coil ensemble. This indicates a highly

diverse residual structure between trajectories. The length of the residual folded structures at

Q = 0.2 is only about 24, 38, 21, and 27 for AA, HA-Gō, AWSEM, and Cα-Gō models. Thus,

the AA, HA-Gō, and Cα-Gō models predict multiple unfolding pathways for lower values of Q.
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On the other hand, the AWSEM model still has a fairly high TM-score; indicating that it pre-

dicts only one main unfolding pathway.

Two structures that are nearly folded at Q� 1 are obliged to have a high TM score, while

two structures at low Q are not so obliged. We thus also plot in Fig 9 a reference curve to com-

pare the structural overlap. We construct this curve by taking a window containing a given

Fig 8. TM-score for folded segments of the protein structures for different runs at Q = 0.8, 0.4, 0.2 from left to right, for

a) All-atom, b) HA-Gō, c)AWSEM and d) Cα-Gōmodel. The color code runs from white (TM-score = 0) to red (TM-

score = 1).

doi:10.1371/journal.pcbi.1005211.g008
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number of residues (e.g. 50), and slide this window along all possible locations of the primary

sequence (1–50, 2–51, etc.), to obtain a set of partial native structures, one structure for each

window position. This process is repeated for all window sequence lengths. The native contacts

Q are calculated for all of the structures, binned, and TM-aligned. This gives a randomized set

of partially unfolded structures, which nevertheless lack thermal fluctuations and strain distor-

tions, and so would tend to have larger TM-alignments when they overlap. Interestingly, this

curve lies roughly between the AWSEM model and all other models, consistent with the strong

pathway-like unfolding mechanism of the AWSEM model.

Comparison across models

In order to more clearly render the unfolding pathways predicted by each model, we clustered

the protein conformations based on the TM-scores during the unfolding at several different

Q-values, see Figs 10 and 11. The structures shown are centroids of the corresponding clusters

that emerge from the clustering analysis. A TM-score cut-off of 0.6 is used to define when con-

figurations no longer belong to a given cluster. The coloring is based on the residue index,

where the C-terminus of the structured protein is in red and the N-terminus is colored blue.

The thickness of the lines is proportional to the fraction of total trajectories in each cluster.

As can be seen in Figs 10 and 11, each model predicts a dominant unfolding route, which

is shown with a thick black line. All models predict one unique unfolding pathway until

Q� 0.44. Along this pathway, β strand 8 at the C-terminus loses structure first, however

subsequent events differ between models. As the structure continues to unfold from

Q� 0.44 to Q� 0.2, we observe multiple unfolding pathways in all models but the AWSEM

model; see Fig 10 panel a) AA, b) HA-Gō, and Fig 11b) Cα-Gō models. The protein struc-

tures from different pulling simulations in the above 3 models are distributed in multiple

diverse conformations.

For the AA, HA, and Cα-Gō models, β strand 1 on the N-terminus generally dissociates

after β strand 8 at the C-terminus. In 3 out of 20 trajectories of the AA model however, β

Fig 9. The mean TM-score between all trajectories as a function of Q for AA model (black line), HA-Gō
(red dotted line), AWSEM (dashed blue), and Cα-Gō (cyan line). The gray symbols show the average of

TM-scores for a randomized set of unfolded structures (see text). The error bars correspond to the standard

error in the mean.

doi:10.1371/journal.pcbi.1005211.g009

Fidelity of CG Protein Models for Simulated Force Spectroscopy

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005211 November 29, 2016 20 / 31



Fig 10. Cluster centroid conformations at different Q are shown for a) AA, and b) HA-Gō. The thickness of the

each line is proportional to the fraction of total trajectories that connect the centroids of the clusters. For both models,

there is a single pathway as long as Q > 0.44. As the protein unfolds more, the models predict multiple pathways.

The dominant unfolding pathway corresponds to the thickest black line.

doi:10.1371/journal.pcbi.1005211.g010
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Fig 11. Cluster centroid conformations at different Q are shown for c) AWSEM, and d) Cα-Gōmodel. The AWSEM

model is characterized by only one unfolding pathway from Q = 0.9 − 0.24, in contrast to all-atom, HA-Gō and, Cα-Gō
models. The Cα-Gōmodel has a single pathway of unfolding as long as Q > 0.44. The dominant pathway is shown with a

Fidelity of CG Protein Models for Simulated Force Spectroscopy

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005211 November 29, 2016 22 / 31



strands 1 and 2 were the last to unfold. This mechanism with β strands 1 and 2 unfolding last

is the pathway observed in the AWSEM model. Generally, the last unfolding events involve

breakage of contacts in β strands 5 and 6 in the AA model. The sequence of unfolding events

along the main forced unfolding pathway in the AA model is β strand 8, then β1 and 7, β2,

then β3 and 4, β6, and then finally β5. In the HA-Gō model, the sequence of unfolding of

events is β8 and β1, then β2, β7, then β3 and 4, then β6 and finally β5 is the last domain to

unfold, which is similar to the AA model. In the Cα-Gō, the first unfolding event is also dissoci-

ation of C-terminal β strand 8, then β1, β strands 2 and 7, then β3, β4, β6, and finally β5.

In contrast to the above three models, the AWSEM model (Fig 11c) predicts only one

unfolding pathway. In this pathway, the unfolding of the protein starts from the C-terminal β
strand 8, then β7, β4, the C-terminal portion constituting roughly half of β strand 3, the N-ter-

minal portion constituting roughly half of β strand 1, β strands 5 and 6 and the remainder of β
strand 3, the remainder of β1, and β2. Strands 1 and 2 were the last to dissociate in all the 20

trajectories.

We also compare the main pathway of unfolding of the AA-model with other models by

calculating the TM-score between the AA model and the three CG models. For comparison

across different models, TM-score was calculated using the program TM-align [68]. The con-

formations of the most populated cluster at Q in the AA model was compared to the corre-

sponding conformations in the other models at the same value of Q. In order to compare CG

with AA models, the TM-alignment only includes the Cα atoms in the backbone of the folded

segment of the protein as described above. The TM-score versus Q, for pairs of two models,

AA with HA-Gō (black line), AA with AWSEM (red line), and AA with Cα-Gō (blue line), is

depicted in Fig 12a.

A TM-score with a value of> 0.5 for a pair of proteins means that the structures are similar

[68]. The observed high TM-scores between AA and all CG models for Q> 0.45 indicate that

all CG models predict unfolding pathways similar to the AA model by this metric. Interest-

ingly, in the range of Q between 0.45 and 1, the AWSEM model shows the best agreement with

the AA model, and the HA-Gō model shows the least agreement.

thick black line. The thickness of the line is proportional to the fraction of total trajectories connecting the centroids in each

cluster.

doi:10.1371/journal.pcbi.1005211.g011

Fig 12. a) TM-score vs. Q, and b) RMSD vs. Q for AA & HA-Gō (black line), AA& AWSEM (red line), AA

& Cα-Gō (blue line). The thickness of each curve represents the statistical error obtained from the

bootstrapping method. High values of TM-score (low values of RMSD) when the protein is partially unfolded

(Q > 0.4) prove that all models predict a similar unfolding pathway until the protein is almost half folded. As the

protein unfolds and more contacts break, each model predicts a different pathway. And finally, when there are

about 20% contacts unbroken, there is no similarity between pathways.

doi:10.1371/journal.pcbi.1005211.g012
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As the protein is unfolded below Q� 0.44, the TM-score shows a more sensitive depen-

dence upon models. At Q less than about 0.25, the TM-scores have reached small values that

would be expected for the alignment of random dissimilar structures.

We conclude therefore that all models predict similar unfolding pathways until the protein

is about half unfolded, at which point the mechanisms begin to diverge from the AA model.

The AWSEM model does not predict multiple pathways as the other models do, but the domi-

nant pathway observed for the AWSEM model is structurally as similar to the AA model as

any of the other CG models. None of the CG models can completely capture the unfolding

mechanism at the lower values of Q for the AA model.

The above conclusion is recapitulated by analyzing the corresponding alignment between

models using the more conventional metric of RMSD. Comparing the folded core of the AA

model in the most populated cluster, as defined in Section “Residue Contacts”, to the same

region in the CG models (most populated cluster, same sequence length as in the AA model)

yields a plot of RMSD vs. Q, as shown in Fig 12b. By this metric, the AWSEM model again

shows the best structural alignment (lowest RMSD) until Q� 0.3, while the HA-Gō model

shows the worst structural alignment.

Conclusion

In this paper we explored the limits of validity of several structural-based coarse-grained (CG)

models by comparing the unfolding mechanisms of a truncated variant of superoxide dismut-

ase, when the protein is subjected to force-induced unfolding. An all-atom (AA), explicit-sol-

vent model is used as the benchmark standard to which the other models are compared. A

more desirable comparison would be with experimental data, however no experimental data

exists for this particular system, and moreover the data that does exist for other systems does

not have the atomic resolution that we have measured and compared with here. Unfortunately

then such a comparison is not possible at present. One may entertain the possibility that one

of the coarse-grained models could agree better with experiments than the all-atom model– at

this time however, such comparisons are purely speculative and without any definitive prece-

dent. To facilitate the present comparison between coarse-grained models and all-atom simu-

lations, the models were normalized in terms of time, energy and force scales. We analyzed in

detail several different metrics of the unfolding process: force-extension curves, evolution of

contact maps, sequence of unfolding via loss of contacts involving a particular residue, and

backbone alignment quantified by TM-score and RMSD.

We found that the force-induced unfolding mechanisms of all CG models differ to varying

degrees from that in the AA model. Both HA and Cα-Gō models do capture most aspects of

the sequence of unfolding events. Comparing the all-atom model with a heavy-atom Gō model

gives some clues as to the combined importance of both energetic heterogeneity of native con-

tacts, and non-native interactions, in modulating the unfolding mechanism. The varying

strength of native interactions can alter the free energy barriers to unfolding, possibly increas-

ing them in special cases when polymer entropy cost is compensated by stronger interactions,

but generally decreasing the folding/unfolding barrier [69–75]. The HA-Gō model does cap-

ture some effects of energetic heterogeneity by counting multiple contacts between amino

acids involving large side-chains, but otherwise is an uncontrolled approximation that may

return erroneous conclusions, particularly when electrostatic effects and solvation are impor-

tant [76]. The HA-Gō model also captures entropic heterogeneity due to the variable backbone

polymer length between residues participating in native contacts [77]. Unless they are strong

enough to result in long-lived off-pathway intermediates, non-native interactions also
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generally decrease folding/unfolding barriers, and they can modulate unfolding mechanisms

[70, 71, 78–80], or modify the diffusion coefficient along the folding reaction coordinate [81–

86].

The HA-Gō model was the softest model examined, after suitable normalization was per-

formed to equate the unfolding free energy across models. This is not obvious, given that it

was not the most coarse-grained model that we had investigated. The Cα model closely follows

as the next softest model.

The AWSEM model differed from all other models insofar as all folding trajectories follow

a single unfolding pathway that does not branch out in the final stages, as one approaches the

unfolded state. This pathway is part of the ensemble of paths observed in the AA model, how-

ever it is not the dominant pathway. On the other hand, the backbone structure predicted by

AWSEM agrees best with the AA model while the protein is still mostly folded.

These findings substantiate that a combination of metrics is required to obtain a full picture

of the unfolding dynamics. No single coarse-grained model studied here agreed best with all of

those metrics simultaneously. It is perhaps surprising that the Cα-Gō model, as the simplest

model, does not perform substantially worse than the more detailed models. This finding may

not be generically true however: A force peak specifically due to non-native interactions was

observed in AA forced-unfolding simulations of DDFLN4, a predominantly β-sheet protein

[87], which recapitulates experimental observations [88] but was not observed in structure-

based Gō models.

In this study, we assumed that the melting temperature of the AA model was equivalent to

the experimental melting temperature, because of the difficulty in effective sampling for AA

models of large proteins. This was used to normalize the temperature scales for the various

coarse-grained models to their corresponding melting temperatures. We have found that the

unfolding mechanism of the AA model is not particularly sensitive to variations in tempera-

ture of ±10K. In the future however, it would be worthwhile to attempt to surmount this diffi-

culty using a combination of biased sampling techniques and non-equilibrium relations to

reconstruct the free energy landscape [89, 90]

An interesting future study will be to apply the tools developed here to full length SOD1,

which includes a long loop of 35 amino acids between β-strands 4 and 5, and another long

loop of 22 amino acids between β-strands 7 and 8.

There is nothing necessarily absolute about the force-induced unfolding mechanism found

here, which may differ from the unfolding mechanism in either thermal or chemical denatur-

ation. Even within the context of force-induced unfolding, the mechanism may be linkage

dependent [91, 92], and may depend on the magnitude of the applied force [41, 93].

Supporting Information

S1 Fig. Comparison of native contacts of the CG models with the AA model. Panels a) and

c) compare contact maps of the AA (black open circle) model with the AWSEM (red) (a) and

Cα-Gō model (cyan) (c) respectively. Panel b) and d) are scatter plots of number of contacts

for a pulling trajectory for AA and AWSEM (b), and AA and Cα-Gō (d) with (black) and with-

out (red) weighting factors.

(TIF)

S2 Fig. Melting curves. for a) HA-Gō, b) AWSEM, and c) Cα-Gō model. For each model,

hQi calculated for first (pink circle), second (blue square) and last third (black circles) of the

simulation time is shown. The solid black line shows a fitted curve to Eq 5 on the data over

the transition region. To obtain the melting temperatures of the CG models, we ran replica-

exchange molecular dynamics (REMD) simulations on the HA-Gō and Cα-Gō models. For
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the Cα-Gō REMD simulations, the time for the preproduction run was 5 ns for each replica

and the production runs for each replica was 5 ns for 16 replicas with replicas over the tem-

perature range of 98–178 K. HA-Gō REMD simulations were performed with 22 replicas, in

the temperature range of 70–131 K, with a total simulation time of 315 ns. To calculate hQ
(T)i for the AWSEM model, we ran 50 direct MD simulations at each temperature T over a

temperature range of 280–440 K.

(TIF)

S3 Fig. Force extension curve and Q versus distance at different Temperature for the AA

model. In order to test the sensitivity of our results, we have performed 5 simulations of the

AA model at T = 290K, 5 simulations at T = 310 K and compare the results of the forced

unfolding with pulling at T = 300K (corresponding to Tf = 335 K). The overall behaviour of

the force-extension curves and Q vs. extension curves are similar. Generally speaking, all force

extension curves at different temperatures exhibit the same main features, e.g. main peaks at

about 10 and 20 nm. The Q-extension curves follow the same pattern approximately. At

T = 290K, the force peaks are slightly higher in comparison to the force peaks at higher tem-

peratures. Also, at the higher temperature, the Q vs distance curves drop more smoothly. Note

that since mechanical unfolding is a stochastic process, we do not expect to see identical curves

for all the runs.

(TIFF)

S4 Fig. Sequence of unfolding for the AA model at T = 290, 300, and 310 K. Unfolding path-

ways and sequence of unfolding for lower and upper temperatures are similar to those at

T = 300 K. The correlation coefficient between the values in the plots at T = 300 & T = 290 K is

0.96; the correlation coefficient between the values in the plots at T = 300 & 310 K is also 0.96.

The color scheme is the same as in Fig 7A.

(TIF)

S5 Fig. Fraction of native contacts for each residue vs. total Q for the AA model at T = 290,

300, and 310 K. Sequences of unfolding for lower and upper temperatures are similar to those

at T = 300 K. Correlation coefficients for T = 300 & 290 K and for T = 300 & 310 K are 0.97

and 0.95. Thus, we are confident that our results for the AA-model are robust with respect to

small variations in temperature. The color scheme is the same as in Fig 7B.

(TIFF)

S6 Fig. Relaxation rate vs degree of unfolding Q. Characteristic relaxation rates are estimated

for partially unfolded structures, by selecting five pairs of residues and implementing the same

protocol for perturbation and equilibration as described in the main text for the native state.

Mean relaxation rates are plotted for all models at Q = 1, 0.7, 0.5, 0.3. For the AWSEM model,

the remaining region of the protein that is folded is distinct from the other models at low Q.

The selected pairs of residues for the AWSEM model (at all Q) are 4 & 32, 6 & 23, 20 & 29, and

18 & 30. For all other models, the selected pairs of residues are 32 & 44, 35 & 69, 41 & 58, 52 &

74, and 61 & 75. For all models, pairs of residues are chosen from the largest folded segment of

the structures at Q = 0.3.

(TIF)

S7 Fig. Convergence of the force scaling factor α as a function of the number of pulling

runs obtained from Eq 7 for the HA-Gō (a), AWSEM (b), and Cα-Gō (c) model respec-

tively.

(TIF)
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S1 Table. Set of fit parameters A1/A2 (see Eq 5) for each perturbed residue pair.

(TIF)

S2 Table. Set of fit parameters κ1/κ2 (see Eq 5) for each perturbed residue pair.

(TIF)
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